Code No.: 14447

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.C.E.) IV-Semester Main & Backlog Examinations, July-2022 Electromagnetic Field Theory

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	Calculate the cross product of $5a_x$ and $9a_y$.	2	2	1	2
2.	Write the applications of Gauss Law.	2	1	1	1
3.	What is the Capacitance for a parallel plate capacitor?	2	1	2	1
4.	What is Poisson's equation?	2	1	2	1
5.	Define Magnetomotive Force.	2	1	3	1
6.	What is the Gauss Law for Magnetic Fields?	2	1	3	1
7.	State the Ampere's modified law.	2	1	4	1
8.	A loop of area 200cm ² is positioned perpendicular to a uniform magnetic field. Without changing in direction of the magnetic field, its magnitude is reduced by 0.08T in the time interval 0.02s. Compute change in flux.	2	3,	4	2
9.	Discuss the importance of Skin effect.	2	1	5	1
10.	What is the range of Standing Wave Ratio?	2	1	5	1
	Part-B (5 \times 8 = 40 Marks)				
11. a)	Explain Coulombs Law.	4	2	1	1
b)	A point charge, $Q = 30$ nC, is located at the origin in Cartesian coordinates. Find the electric flux density D at $(1, 3, -4)$ m.	4	3	1	2
1,2. a)	Prove that $E = -\nabla V$ in an Electric Field.	4	2	2	2
<i>d</i> b)	An electrostatic field is given by $E = \left(\frac{x}{2} + 2y\right)a_x + 2xa_y$ V/m.	4	3	2	2
	Find the work done in moving a point charge Q =-20 μ C				
	(a) from the origin to (4, 0, 0) m, and (b) from (4, 0, 0) m to (4, 2, 0) m.				

13. ay	Explain Biot-savart's Law.	4	2	3	1
pa	The flux density at a point in the space is given by $B=8x\ a_x+4ky\ a_y+8\ a_z\ Wb/m^2$. Compute the value of constant k.	4	3	3	2
14. a)	Write four Maxwell equations in Point form and Integral form for time varying fields.	4	2	4	1, PSO3
b)	In free space, $E(z,t) = 10^3 \sin(\omega t - \beta z)a_y$ (V/m). Obtain $H(z,t)$.	4	3	4	2, PSO3
15. a)	Derive equations for wave propagation in good conductors.	4	3	5	2, PSO3
b)	Discuss about reflection of uniform plane wave at normal incidence.	4	2	5	1, PSO3
16. a)	Derive the expression for E for an infinite line charge.	4	3	1	2, PSO3
by	Derive the boundary conditions in static electric fields.	4	3	2	2
17.	Answer any <i>two</i> of the following:				
3)	An infinitely long, straight, filamentary current I along the z axis in cylindrical coordinates is available. A point in the $z=0$ plane is selected with no loss in generality. Compute H.	4	3	3	2, PSO3
(b)	Explain Faraday's law	4	2	4	1
c)	In free space, $E(z, t) = 50 \cos(\omega t - \beta z) a_x (V/m)$. Find the average power crossing a circular area of radius 2.5 m in the plane z =const.	4	3	5	2, PSO3

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	32.50%
iii)	Blooms Taxonomy Level - 3 & 4	47.50%
